Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 26: e20190041, 2020. graf
Article in English | LILACS, VETINDEX | ID: biblio-1056676

ABSTRACT

Here, we described the presence of a neurotoxin with phospholipase A2 activity isolated from Micrurus lemniscatus venom (Mlx-8) with affinity for muscarinic acetylcholine receptors (mAChRs). Methods: The purification, molecular mass determination, partial amino acid sequencing, phospholipase A2 activity determination, inhibition of the binding of the selective muscarinic ligand [3H]QNB and inhibition of the total [3H]inositol phosphate accumulation in rat hippocampus of the Mlx-8 were determined. Results: Thirty-one fractions were collected from HPLC chromatography, and the Mlx-8 toxin was used in this work. The molecular mass of Mlx-8 is 13.628 Da. Edman degradation yielded the following sequence: NLYQFKNMIQCTNTRSWL-DFADYG-CYCGRGGSGT. The Mlx-8 had phospholipase A2 enzymatic activity. The pKi values were determined for Mlx-8 toxin and the M1 selective muscarinic antagonist pirenzepine in hippocampus membranes via [3H]QNB competition binding assays. The pKi values obtained from the analysis of Mlx-8 and pirenzepine displacement curves were 7.32 ± 0.15, n = 4 and 5.84 ± 0.18, n = 4, respectively. These results indicate that Mlx-8 has affinity for mAChRs. There was no effect on the inhibition ability of the [3H]QNB binding in hippocampus membranes when 1 µM Mlx-8 was incubated with 200 µM DEDA, an inhibitor of phospholipase A2. This suggests that the inhibition of the phospholipase A2 activity of the venom did not alter its ability to bind to displace [3H]QNB binding. In addition, the Mlx-8 toxin caused a blockade of 43.31 ± 8.86%, n = 3 and 97.42 ± 2.02%, n = 3 for 0.1 and 1 µM Mlx-8, respectively, on the total [3H]inositol phosphate content induced by 10 µM carbachol. This suggests that Mlx-8 inhibits the intracellular signaling pathway linked to activation of mAChRs in hippocampus. Conclusion: The results of the present work show, for the first time, that muscarinic receptors are also affected by the Mlx-8 toxin, a muscarinic ligand with phospholipase A2 characteristics, obtained from the venom of the Elapidae snake Micrurus lemniscatus, since this toxin was able to compete with muscarinic ligand [3H]QNB in hippocampus of rats. In addition, Mlx-8 also blocked the accumulation of total [3H]inositol phosphate induced by muscarinic agonist carbachol. Thus, Mlx-8 may be a new pharmacological tool for examining muscarinic cholinergic function.(AU)


Subject(s)
Animals , Rats , Snakes , Elapid Venoms/adverse effects , Phospholipases A2 , Inositol Phosphates , Acetylcholine , Receptors, Muscarinic/analysis , Sequence Analysis, Protein
2.
Article in English | LILACS, VETINDEX | ID: biblio-954829

ABSTRACT

Background Sea urchins are animals commonly found on the Brazilian shoreline, being Echinometra lucunter the most abundant species. Accidents caused by E. lucunter have been reported as one of the most frequent in Brazil, and are characterized by intense pain and inflammation, consequence of spine puncture in the skin. In order to characterize such toxic effects, we isolated one molecule that caused inflammatory and nociceptive effects. Methods E. lucunter specimens were collected without gender distinction. Spines were removed and molecules were extracted, fractionated by RP-HPLC and assayed for inflammatory and nociceptive activity, in a biological-driven fractionation way, until the obtainment of one active molecule and its subsequent analysis by mass spectrometry (MS and MS/MS). For inflammation, intravital microscopy was performed on the mouse cremaster muscle, in order to evaluate rolled, adherent and migrating leukocytes. Paw edema was also evaluated. For the nociceptive activity, the paw pressure test was performed in rats. Results One molecule could be isolated and related to the inflammatory and nociceptive activity. Regarding inflammation, increase in adherent and migrating cells was observed in the cremaster muscle after the administration of the molecule. Corroborating the inflammatory response, paw edema was also observed, although only in 20% of controls and 20 min after injection. Additionally, this molecule was able to decrease significantly the pain threshold, characterizing hyperalgesia. This molecule was analyzed by mass spectrometry, and according to the exact molecular mass, isotopic distribution and fragmentation profile, it was possible to propose the molecular formula C29H48N3O10. Conclusions One isolated molecule from the spine extract of E. lucunter is able to elicit inflammation and hypernociception in animal models, which is in agreement with the effects observed in sea urchin accidents.(AU)


Subject(s)
Animals , Sea Urchins/genetics , Hyperalgesia , Inflammation , Biological Products , Toxicity , Nociceptive Pain
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484720

ABSTRACT

Abstract Background Sea urchins are animals commonly found on the Brazilian shoreline, being Echinometra lucunter the most abundant species. Accidents caused by E. lucunter have been reported as one of the most frequent in Brazil, and are characterized by intense pain and inflammation, consequence of spine puncture in the skin. In order to characterize such toxic effects, we isolated one molecule that caused inflammatory and nociceptive effects. Methods E. lucunter specimens were collected without gender distinction. Spines were removed and molecules were extracted, fractionated by RP-HPLC and assayed for inflammatory and nociceptive activity, in a biological-driven fractionation way, until the obtainment of one active molecule and its subsequent analysis by mass spectrometry (MS and MS/MS). For inflammation, intravital microscopy was performed on the mouse cremaster muscle, in order to evaluate rolled, adherent and migrating leukocytes. Paw edema was also evaluated. For the nociceptive activity, the paw pressure test was performed in rats. Results One molecule could be isolated and related to the inflammatory and nociceptive activity. Regarding inflammation, increase in adherent and migrating cells was observed in the cremaster muscle after the administration of the molecule. Corroborating the inflammatory response, paw edema was also observed, although only in 20% of controls and 20 min after injection. Additionally, this molecule was able to decrease significantly the pain threshold, characterizing hyperalgesia. This molecule was analyzed by mass spectrometry, and according to the exact molecular mass, isotopic distribution and fragmentation profile, it was possible to propose the molecular formula C29H48N3O10. Conclusions One isolated molecule from the spine extract of E. lucunter is able to elicit inflammation and hypernociception in animal models, which is in agreement with the effects observed in sea urchin accidents.

SELECTION OF CITATIONS
SEARCH DETAIL